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SECTION 4.0

SEQUENTIAL DECODING

4. I SEQUENTIAL DECODING AS A TREE SEARCHING ALGORITHM

The sequential decoder accepts the sequence of syITlbols froITl

the channel denoted by r = {r.. } where the index i refers to the received
1, J

branch and the index j refers to one of the n sYITlbols on the branch for

a code rate R = lIn. FroITl the received sequence, the sequential

decoder atteITlpts to find a path ~ = {xi, j I through the tree diagraITl

which has a high likelihood of producing the sequence.!:.. It does so by

selecting a tentative path in the tree diagraITl starting at the all-zeroes

state and at each successive node following, the branch (transition) th,at

best ITlatches the appropriate segITlent of.!:.. Whenever the path that the

decoder is currently following becoITles too unlikely, a search is initiated

for a better one. To deterITline the likelihood of a given path in the tr ee

diagraITl, a ITletric is established as a ITleasure of how different a par-

ticular path is froITl the received sequence. As an exaITlple of how the

ITletric ITleasures the likelihood, consider ideal coherent binary phase-

shift-keyed (PSK) ITlodulation over a Gaussian noise chanre I and eight-

level quantization on the deITlodulated sYITlbols. The signal strength

and noise density is norITlalized such that the noise density has unit

variance and the received signal aITlplitude is ±.V 2E s IN o ' where E s IN o

is the signal energy-to-noise one-sided spectral density ratio of each

syITlbol. In this case, the nearly optiITluITl choice (no noticeable

59
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degradation in performance) of the quantizing thresholds is 0, ,±O. 5,

.±l.O, and +1.5. Now assign the quantization bits to the eight levels

as follows:

III I 11 0 I 101 I 100 I
-1.5 -1.0 -0.5 0

000 I 001 I 010 I 011
0.5 1.0 1.5

Using this notation, the first quantization bit represents the sign, 0

for + and 1 for - (this is also the convention for encoding PSK with

binary symbols), the next two quantization bits represent the magni-

tude. For a value of Es/No equal to 0 dB, the probability of the assign-

ment of a given quantization to a received symbol is presented in

Table 4.1.

Table 4. 1 Probability of Quantization Assignment

Quantization
Symbol
Transmitted III 110 101 100 000 001 010 011

0 0.00179 0.00613 0.02 0.051 0.102 O. 159 O. 195 0.465

1 0.465 0.195 0.159 0.102 0.051 0.02 0.00613 0.00179

To compute the n symbol metrics that form the branch metric

along a path, each symbol on the branch corresponding to a transmitted

zero is " exclusive-OR"- e d (modulo-2 addition) to the sign bit of the

received symbol quantization. The metric interval is defined as the

result of " exclusive-OR"-ing the symbol on the zero branch with the

sign bit of the received symbol quantizat ion. If 10 is the probability

of a given quantization assignment for a transmitted zero and II is the
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probability for a transmitted one, then the symbol metric along the

zero branch is given by:

WsO = C[I -U -IOg2G~)J

where c is a scale factor and U is the bias (to be optimized but simu­

lations indicate the best choice is equal to the code rate). Since the

best codes have generators that tap the input sequence to the convolu­

tional encoder, then the code symbols on the one branch are complements

of the symbols on the zero branch and the symbol metric along the one

branch is given by:

(4.2)

If a symbol on the zero path is 1 and the received symbol quantization

is 110, the resulting metric interval is 010. From Table 4. 1, it is

seen that 10 = O. 195 and II = O. 00613 for the metric interval 010.

Hence, the symbol metric along the zero branch is WsO = c(5. 87-U)

and along the one branch is W
s1

= -c(7.3+U).

The branch metric is the sum of the n symbol metrics for code

rate 1 In along the branch. The path metric is the sum of the branch

metrics over the branches in the path. The bias U is chosen so that

the path metric of a long transmitted path (code word) increases with

the length of the path while any other long path has a path metric that

decreases with the length of the path. The scale factor c is usually
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chosen COl" i rnplementation convenience.

The path ITletric for a given path ~ in the tree diagram of length

h branches is denoted W(u, h). In terITls of W(~, h), the sequential

decoder attempts to hypothesize u through the tree diagram for which

W(~, h) increases with h. If W(:!:!., h) starts to decrease with increasing

h, then the decoder searches back to find a path u' for which W(u', h)

increases. To establish whether a path has an increasing or decreasing

metric with h and to eliminate the need to store large values of W(~, h),

thresholds are established with spacing~. After each move forward,

t~ is subtracted from W(~,h) such that t~ ~ W(:!:!.,h) < (t+l)~ , where

t is an integer. Hence, under normal conditions after a move forward

and the metric adjustment, 0::.. W(:!:!., h) < ~. If the decoder reaches

some node in the path such that each branch forward froITl the node will

ITlake W(:!:!., h) negative, then the decoder cannot continue forward at this

value of the threshold. Referring to the flow chart in Figure 4. 1, it

is seen that, if W(~, h) is negative along the most probable branch,

then the sequential decoder tests the path metric W(u, h-l) correspond­

ing to the branch previously followed forward. The branch just behind

the branch for which W(:!:!., h) was first negative must be positive since

t~ was subtracted to make 0 .:::. W(~, h-l) <~. However, as the decoder

backs up, branches farther back may be negative. For example, if

W(.:!:!.'h-2) < W(~,h-l) >~ and at least ~ was subtracted from W(:!:!.,h-l),

then W(u, h-2) < O. If the path metric is positive, then paths are
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Figure 4. I Logical Flow Chart of the Sequential Decoding Algorithm
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examined leading from the other branch in the binary case (the next

most probable branch in any case) if it has not already been examined.

If both branches have been examined, then the decoder must back up

another branch. If the path metric is negative, then ~ is added to it

and the testing continues. If the path metric has been increased by

~ and a branch is re-examined, then the metric must not be allowed

to have t ~ subtracted from it or the sequential decoder could enter

a loop.

To more easily understand the operation of the sequential decoder,

an example is presented for the rate R =J I 2 convolutional code of

Figures 2. 1 and 2.2. Also, to simplify the example, hard decisions

on the demodulated symb ols are as su med. For ideal coherent PSK

modulation over a Gaussian channel with E s IN o = 1.8 dB, the proba­

bility of error is 0.045. Therefore, 10 = 0.955 and II = 0.045 with the

symbol metric w = c(O. 933-U) for a match between the received symbol

and the symbol on the path, while the symbol metric WI = -c(3. 47+U)

is for a mismatch. A choice cOrrlmonly used for c and U is c = 1. 36

and U =0.567 for a rate 112 code. In this case, the branch rrletric is

1 for a double agreement between received symbols and the syrrlbols

on the branch, -5 for a single agreement, and -11 for a double dis­

agreement. By simulations, it is found that, using these branch

metrics, the best performance is obtained for threshold spacing

~ = 9.
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Following the logical flow diagram in Figure 4. 1 and the tree

diagram in Figure 2. 2, the tree searching of the sequential decoder

to find the most likely transmitted path for a received sequence of

0101000000 is shown in Table 4. 2. The variable Q has not been dis-

cussed but its purpose will become clear during the discussion of

- .
Table 4.2. In decoding step 1, the received branch (the first two

Table 4.2 Example of the Sequential Decoding Algorithm

Decoding Decoded
Step Node Branch Sequence W(u, h) W(~,h-l} g

1 a 00 - -5 0 0
2 a 00 - 4 9 1
3 aa 00 0 -1 4 0
4 a 11 - 4 9 1
5 ab 00 1 -1 4 0
6 a 00 - 13 18 1
7 aa 00 0 8 13 1
8 aaa 00 00 0 8 0
9 aaaa 00 000 1 0 0

10 aaaaa 00 0000 2 1 0
11 aaaaaa 00000 2 0

symbols) is 01. However, this is only a single agreement no matter

which branch emanating from the base node or origin node is examined

by the decoder. Hence, there is a tie path. In this case, either branch

may be examined first but, by convention, the branch is followed for

which the first of the two received symbols matches the first symbol

on the branch. Therefore, the branch with symbols 00 is attempted,

but since the branch metric is - 5 for a single agreement, and is to be
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added to the path metric of 0 at the origin, the decoder cannot move

forward without making the path metric negative. Following the flow

chart for this condition, the decision block "ls W(u, h-l} :::.. 0" is encoun­

tered. Normally, since the path metric W(:!!, h-l} = 0, the decoder

would back up, but at the origin, the decoder cannot back up, so the

alternate decision must be made to increase W(:!!, h-l} by ~, making

it equal to 9. Now, the decoder can move forward along the 00 branch,

resulting in a path metric equal to 4. When the second branch in the

path is attempted, there is another tie branch. Attempting to follow

the 00 path results in a path metric of -1. This time, W(:!!, h-l} = 9.

Therefore, the decoder moves backward and selects the other branch

emanating from the origin, the 11 branch. Following the 11 branch

from the origin, the path metric becomes 4 since there is a single

agreement on the branch. To represent the nodes along the path, a

sequence of labels on the tree diagram is used beginning with the origin

node labeled a. Thus, from node ab, the decoder attempts the 00 branch.

However, this branch also results in a path metric of -1. Therefore,

the decoder backs up to the origin node a and, since there are no other

untried branches emanating from the origin, ~ is added to the path

. metric W(u, h-l} making it equal to 18. Now, when the 00 branch

emanating ,from the origin is attempted, the path metric becomes 13

and, when the 00 branch emanating from the node aa is attempted,· the

path metric becomes 8. Beyond the node aa, the received sequence



67

completely agrees with the uppermost path in the tree diagram.

Therefore, the remaining branch metrics are each equal to I,

corresponding to a double agreement branch.

In decoding step 8, the path metric is increased from 8 to 9, but

since this is the first time on this branch, t~ is subtracted from the

path metric with t '" 1 making the path metric O. In decoding step 6,

the path metric was large enough to have ~ subtracted from it, but

since this was not the first time on this branch, it was not allowed.

If ~ had been subtracted from the path metric in decoding step 6, then

the decoder would follow the same decoding steps as for steps 3 -5, and

the decoder would be in a loop. If the decision block "FIRST TIME ON

BRANCH" was implemented in a brute force method, a very large

memory would be necessary. However, it has been proven by Fano 5

that a single binary variable can perform this function. In this case,

a variable g is set equal to 1 each time the decoder backs up. The

variable g is set equal to 0 in the forward path search of the decoder

when the path metric is 0 ~ W(u, h) <~. When the variable g is equal

to I, then the decoder is not allowed to subtract t~ from the path metric.

In Table 4.2, it is seen that, in the back search of the decoder in steps

1 and 3, the variable g is set to 1 but then is immediately set to 0 when

the decoder attempts a forward move in steps 2 and 4, since the path

metric is less than~. In step 5, the decoder begins a back search,

and the variable g is set equal to 1 for step 6. However, in decoding
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st ep 6, when the decoder moves forward, the path metric is greater

than~. Hence, Q is not set to zero and t~ cannot be subtracted

from the path metric. By decoding step 7, the path metric is now

less than ~, and Q is set equal to zero for step· 8. The decoder

only back searches when the most probable path segment results in

a negat ive path metric, and as the decoder begins to search forward

after the path metric has been increased by~, the same most prob­

able path segment must be re-examined. However, when the branch

is reached that initiated the back search, the path memory will be

between 0 and ~. Hence, Q is reset equal to zero only when a branch

is examined for the fir st time.

In Table 4.2, the decoded sequence is shown correspondi ng to

the path through the tree diagram. As is seen by the example, in

order to decode a message, the sequential decoder may have to back

up and change the partially decoded sequence. Therefore, the decoded

bits cannot be immediately released to the data user. The number of

decoded bits that must be retained in order for the decoder to change

the partially decoded segment represents a delay of information to the

data user. Thus, an important part of this study is to provide tech­

niques to minimize this number of retained decoded bits.

In Section 2. 0, it was pointed out that paths in the tree diagram

include remergers. If the sequential decoder follows a path other than

the transmitted path which remerges with the transmitted path, then
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the sequential decoder will make undetected errors corresponding

to the erroneous decoded bits along the unremerged portion of the

path. Ho wever, it has been shown by theoretical bounds and by

simulations that the probability of undetected error decreases expon­

entially with the memory length K, approximately as 2 -K/2. There­

fore, the probability of undetected error can be made arbitrarily

SIn all since the sequential decoder does not require a finite memory

length code. However, as will be seen in the next section, the prob­

ability of error per bit of a sequential decoder is severely dependent

on the computational capability (number of branches that may be

searched for each received branch) of the decoder. While the prob­

ability of error per bit is still completely limited by the complexity

of the decoder, under certain conditions, the sequential decoder can

achieve lower probability of error per bit for a given complexity than

any other decoding technique devised to date.

4.2 PERFORMANCE PARAMETERS

A functional block diagram of a practical sequential decoder is

presented in Figure 4.2. The sequential decoder receives quantized

code symbols from the demodulator. The forward buffer is used to

store incoming data until the decoder can examine the data. Under

normal conditions, the forward buffer is relatively empty. However,

during periods of a large number of errors from the demodulator (or

symbols with low reliability in the quantized case), the decoder must
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Figure 4.2 Functional Block Diagram of a Practical Sequential Decoder
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search many branches in order to find the most probable code word

that was transmitted. Thus, during periods of high computational

demand on the decoder, the forward buffer stores the incoming data

until there is a period of a small number of errors from the demodulator.

The CPU buffer in Figure 4.2 allows the decoder algorithm logic

to· read several branches at a time from the forward buffer. The

backup buffer is used to store the quantized symbols of b received

branches corresponding to b past hypothesized bits of the transmitted

path. Each time the. decoder investigates a received branch, the

algorithm logic loads the convolutional encoder with the previous

hypotheses to compute the symbols on the particular branch in the

code tree, and the branch metric is obtained from the metric table.

If the decoder searches forward and extends the path in the tree by one

branch, a new received branch is obtained from the forward buffer (or

from the CPU buffer). When the new hypothesis and received branch

are stored in the backup buffer, one hypothesized bit (the oldest in the

backup buffer) is released to the data user.

Computer simulations are necessary to measure the performance

of sequential decoding with various design parameters since analytic

results are not exact enough for engineering design purposes when the

best performance is to be obtained. The computer simulation program

of the sequential decoder was written prior to this study by Axiomatix

to measure the computations distribution, the backsearch distribution,
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and the probability of undetected errors. The program is oriented

to the ideal coherent PSK modulation with a white Gaussian noise

channel. However, very little modification is necessary to simulate

the performance of the sequential decoder in conjunction with other

types of modulation and channels. The program is very flexible in

terms of the design parameters that may be specified for the sequential

decoder. Either rate 1/2 or 1/3 codes can be used up to a maximum

memory length of the encoder of 60 stages. The generated samples

of the channel can be quantized by Q = 1, 2, or 3 bits. The metric

table is generated by the computer program calculating the probability

of the quantization assignments as discussed in the previous section.

These probabilities of the quantizat ion assignment also could be input

data when specifying the metric table. The bias U is also an input

parameter. Another input design parameter is how many bits are used

to represent each entry in the metric table. The scale factor c is com­

puted such that the most negative entry (which is also always the largest

in magnitude) in the table uses all of the available bits for its represent­

a tion. The remaining design parameter to be specified for the algorithm

is the threshold spacing ti.. The value of ti. is specified relative to the

unsealed metrics. However, the threshold spacing used by the decoder

in the simulation is cti. or a scaled value.

To establish the performance of the sequential decoder with various

design parameters, statistics are taken on the number of computations

(moves) for the decoder to find a path that it can extend one branch
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farther into the code tree than was previously reached. Each time

a path is extended one branch farther into the code tree, a decoded

bit is released to the data USer. Thus, these statistics on the com­

putations lead to the computations distribution to decode a bit. This

computations distribution to decode a bit is used in the design of a

practical sequential decoder to determine the size of the forward

buffer and the speed advantage of the logic unit.

Another design parameter for a practical sequential decoder is

the size of the backup buffer which determines the decoding delay.

To determine the required size of the backup buffer, the backsearch

distribution is measured. Each time a path is found by the decoder

that may be extended one branch farther into the code tree, the maxi­

mum number of nodes is recorded for which the decoder was required

to back up to find this new path or to add /::}. to the metric so that the

present path could be extended. Thus, fronT the backsearch statistic

for each decoded bit, the probability of a given backsearch required

by the decoder is determined.

4.2.1 Probability of Undetected Error

To obtain undetected error statistics of the sequential decoder,

as each bit is decoded, the bit is compared with the known transmitted

bit to test for errors. The measured probability of undetected error

for a signal energy per bit/noise density (Eb/No > of 4.8 dB, using

a systematic code of rate 1/2 with hard decisions on the received
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binary symbols, is given in Table 4.3. The algorithm design para­

meters for this cas e are thos e for the optimized rate 1/2 hard deci­

sion sequential decoder presented in example, i. e., a branch metric

equal to 1 for a double agreement between the received symbols and

the symbols on the branch, -5 for a single agreement, -11 for a double

disagreement, and threshold spacing .:i = 9. Table 4.3 illustrates

that, for memory length larger than 32, the probability of und·etected

error is negligible for a design of the forward buffer and backup buffer

size to obtain an output probability of error equal to 10-4 which is

us ed for the voice channels of manned spacecraft missions.

Table 4.3 Sequential Decoder Undetected Error Probability

Memory Length Probability of Undetected Error

9 4.0 x 10-3

20 -42.8 x 10

32 2.0xlO- 5

4.2.2 Computation Distribution

The probability P(C.2. Cm)' the computations distribution, is the

probability that the number of branches C (not necessarily distinct)

to be searched for a newly received branch is greater than. or equal

to some number of branches Cm. An alternate definition is the prob­

ability that the number of computations C to decode a bit is greater

than or equal to some number of computations Cm . The computations
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distribution has been upper bounded by Savage6 for random codes and

by Huth7 for fixed codes and has been lower bounded by Jacobs and

Berlekamp8 for random codes. These theoretical bounds and com­

puter simulations have indicated that, for C m much greater than 1

(i. e., C m 2: 100), the computations distribution is Pareto in form or:

(4.3)

where a and A c are given in Table 4.4 for various code rates and

values of Eb/No that have been measured by computer simulation.

The branch metrics for the rate 1/2 hard deci sion decoder have pre­

viously been optimized to only require 5 bits for their representation

(i. e., 1, -5, -11, as has been discussed). For this case, the threshold

spacing has been optimized, resulting in a scaled value of 9. In the

other cases, the threshold spacing is unsealed, as discussed previously.

The remaining simulation results presented in Table 4.4 have not been

optimized to use the minimum number of bits to represent the branch

metrics. However, this will be presented in Section 4. 2.4. For com­

parison and to obtain simple measures of the complexity, a larger

number of bits is used to represent the branch metrics than may be

eventually needed, and the bias U is chosen to equal the rate R. Also,

to guarantee that the probabilty of undetected error is a negligible

contribution to the total probability of error, larger code memory

lengths are used than may be eventually needed. The computations

distribution, the backup distribution, and the complexity of the decoder
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Table 4.4 Measured Computations Distribution Parameters

Branch Received
Code Memory Metric Symbol Eb/No Threshold
Rate Length Quantization Quantization Spacing A c Q'

R K (bits) Q (bits) (dB) a

4.6 9* 0.212 0.895

4.9 9* 0.304 1. 07
32 5 1

5.2 9* 0.328 1. 187

5. 5 9* 0.389 1. 41

1.5 0.480 0.907
1/2

3.0 0.309 0.879
2.5

4.5 0.291 0.868
44 12 3

6.0 0.302 0.848

3.0 3.0 0.415 1. 167

3.5 3.0 0.775 1. 49

,. 3. 0 0.387 0.723
3.5

4.5 0.394 0.716

1 4.0 3.0 0.526 0.954

4.5 3.0 0.580 1. 145

1/3 23 12 5.0 3.0 0.624 1. 36

3.0 0.540 0.924
2.0

4.5 0.469 0.887
3

2.5 3.0 0.639 1. 138

3.0 3.0 0.696 1. 364

*The threshold spacin'g a for the optimized rate 1/2 hard decision is the scaled
value while all other threshold spacing values are unsealed.
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are all very insensitive to the code tnetnory length in the range 32

to 64. Therefore, it is not an unCOtntnon design practice to use a

larger code tnetnory length than tnay be needed.

While Table 4.4 presents the paratneters of the cOtnputations

distribution that tnake cotnplexity of the forward buffer a straightfor­

ward calculation, it is difficult to obtain an intuitive feeling for the

relationship between the choice of algorithtn paratneters and their

resulting perfortnance. Therefore, the tneasured cotnputations dis­

tributions frotn the cotnputer sitnulations are presented in Figures

4.3 through 4.6. Figure 4.3 presents the cotnputations distribution

for the optitnized rate 1/2 hard decision decoder. As Eb/No is in­

creased, it tnay be observed that significant itnprovetnents in the

cotnputations distribution are obtained. In Figure 4.4, the perfortn­

ance for the rate 1/2 code and three-bit quantization on the received

sytnbols is presented. At Eb/No = 2.5 dB, several values of threshold

spacing are pres ented. The best choice for the unsealed threshold

spacing ~ is about 3. O. The value of ~ = 4.5 is only slightly worse

so that, actually, a fairly wide choice for ~ is possible without signi­

ficant degradation. Again; a significant itnprovetnent in the cotnputa­

tions distribution is obtained for larger values of Eb/No' Figure 4.5

pres ents the rate 1 I 3 hard decision decoder. The choice of ~ = 3. 0

still gives a slight itnprovetnent over ~ = 4.5, and increasing Eb/No

gives significant itnprovetnent. Finally, Figure 4.6 presents COtnpu-
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tations distribution of the decoder with rate 1/3 and three-bit quanit­

zation on the received symbols. In this case, the threshold spacing

is more critical, and Ii = 3.0 gives much better performance than

Ii = 4.5. Comparing the four fj.gures, it is Seen that approximately

2.0 dB in Eb/No is gained by using three-bit quantization instead of

ha rd decisions on the received symbols, and not quite 0.5 dB in Eb/No

is gained by using a code rate of 113 instead of 1/2.

4.2.3 Backsearch Distribution

The probability P(bs .2. b m ), the backsearch distribution, is the·

probability that the number of branches b s ' for which the decoder must

back up in its search to find the best path containing a newly received

branch, is greater than or equal to some number of branches b m . The

backsearch distribution has been upper bounded by Huth 7 for fixed codes.

This theoretical bound and computer simulations have indicated that,

for b m greater than two memory lengths for rate 1/2 and one memory

length for rate 1/3, the backsearch distribution is of the form:

P(bs ~ bm ) ~ A b 2- 13bm (4.4)

where 13 and A b are given in Table 4.5 for various code rates and vaiues

of Eb/No that have been measured by computer simulation. In Section

4. 2.4, the number of bits to represent the branch metrics will be

. optimized in terms of the computations distribution and the backsearch

distribution to minimize any degradation that might occur when using

fewer bits. However, for initial comparisons of the backsearch dis­

tribution, 12 bits were us ed to represent the branch metrics.
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Table 4.5 Measured Backsearch Distribution Parameters

Branch Received
Code Memory Metric Symbol Eb/No Threshold Ab f3
Rate Length Quantization Quanti zation Spacing

10- 2R K (bits) . Q (bits) (dB) A- x 10- 2 x

4.6 9*: 1. 28 6.53

4.9 9* O. 770 7.05
32 5 1

5.2 9':' 0.270 7. 15

5. 5 9~:~ 0.381 9.97

1/2 1.5 1. 24 4.65

2.5 3.0 0.910 4.99

44 12 3 4.5 0.630 5.45

3.0 3.0 0.342 5.36

3.5 3.0 0.139 6. 14

3.0 1. 28 5.90
3.5

4.5 6.54 7.08

23 12 1 4.0 3.0 4.84 10. 2

4.5 3.0 5.84 13.9

1/3 5.0 3.0 5. 11 17.6

3.0 2.59 7.66
2.0

4.5 4.94 9.20
23 12 3

2. 5 3.0 6.54 13. 2

3.0 3. 0 6.12 17.0

':' The threshold spacing for the optimized hard decision rate 1/2 decoder is
the scaled value while all other values of threshold spacing are unsealed.
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Table 4.5 presents the parameters of the backsearch distribution

that simplify the calculation of the backup buffer complexity. However,

it is difficult to make comparisons between the choice of algorithm

parameters using their resulting performance. Therefore, the mea­

sured backsearch distributions from the computer simulations are

presented in Figures 4.7 through 4. 10. Figure 4.7 presents the back­

search distribution for the optimized rate 1/2 hard decision decoder.

As Eb/N o is increased, it may be observed that significant improve­

ments in the backsearch distribution are obtained. In Figure 4.8, the

performance for the rate 1 / 2 code with three-bit quantization on the

received symbols is presented. At Eb/No = 2.5 dB, the performance

for several values of threshold spacing is presented. As the threshold

spacing is increased, the backsearch distribution is improved until

/:i = 4.5, where there is no improvement obtained by increasing the

threshold spacing to /:i = 6. O. However, the best choice for the thre­

shold spacing in terms of the computations distribution was /:i = 3. O.

Therefore, there is a trade-off between the computations distribution

and the backse~rch distribution in choosing the threshold spacing.

Except when the speed advantage is extremely large, as it is for the

data rates of the voice channels, the value of threshold spacing is

used that gives the best computations distribution, since the forward

buffer represents the majority of the complexity and decoding delay.

Therefore, most of the computer simulations used /:i = 3. 0 as the

value of threshold spacing.



85

150 170 19090 110 130

bm.
705030

10- 5 1.-_.....a..__..L.-_........_ .............I-__&....L._......&....a.-_..L.-..lIO.-........__....

10

10 - 2 ......,.,rr---...--..,.----,--..,..---r---,.-,;....--r----,--;

-S
,..0

AI
CIl

,..0-Poi

Figure 4. 7 Backsearch Distribution for Rate one-half
Hard Decision Sequential Decoder with K=32



86

19090 110 130 150 170

brn

70

~~-6=3

~~_6=4.5

~---.:-6=6

50

6=3
Eb!No :;3.5 dB

30

10- 5 1--_-'-_......JI...-_..J-_--L__~ --J..--L...l"""'"-....L.-~

10

Figure 4.8 Backsearch Distribution for Rate one-half
Three Bit Quantization Sequential Decoder with K=44



87

~ = 3

10-5 '--_..L._---JL.-_......._---JL.-_--L---I._L.-_--L__..L.-~.....

10 30 50 70 90 110 130 150 170 190

brn

Figure 4."9 Backsearch Distribution for Rate 1/3 Hard
Decision Sequential Decoder with K = 23



88

110 130 150 170 190

brn

90

15---~r---6= 3

705030

10- 5 ~_....L-_""" ....&..I. """-_-"'-__-""""'-- __

10

10- 2 ~~-.----y--.,.----,.--.,.....--r---,r---""T""-"'"

Figure 4. 10 Backsearch Distribution for Rate 1/3 Three Bit
Quantization Sequential Decoder with K = 23



Comparing the backsearch distributions for rate 1/3 in Figures

4.9 and 4. 10 with the backsearch distributions for rate 1/2, it may

be observed that the slopes of the distribution for rate 1/3 are much

steeper than for rate 1/2. Thus, fewer branches must be stored for

backup with code rate 1/3. The size of the backup buffer does not

depend on the speed advantage of the decoder and, hence, not on the

data rate. For each branch to be stored in the backup buffer, Q/R+l

storage bits are needed.

4.2.4 Degradation Due to Metric Table Size

To determine the computations distribution and backsearch dis­

tribution, the number of bits used to represent each branch metric

was N b = 12, except for the code rate 1/2, hard deci sion case, where

N b has been previously optimized to be equal to 5. In this section,

the performance .versus Nb is presented.

The entries in the metric table have Nb bits to represent the best

branch metric, a bit to indicate whether the best branch is the zero

branch or the one branch, and N b bits to represent the difference

between the best metric and the other metric. Thus, 2Nb +l bits are

needed for each entry in the metric table. There are 2
nQ

possible

metric intervals where the n symbols on a branch are quantized to Q

bits. Therefore, the metric table has 2nQ words of 2Nb +1 bits each.

Table 4.6 presents the results of simulations for various values

of Nb in terms of the parameters A c and a of the computations



TABLE 4. 6 Performanc e Versus Branch Metric Quanti zation

90

Computation Backsearch
Distribution Distribution

Received Branch Parameters ParaITleters

Code SYITlbol Eb/No Metric
Rate Quanti zation Quantization A c Q' A b f3

R Q (bits) (dB) Nb (bits) x10- 2 x10- 2

12 0.415 1. 167 0.342 5.36

10 0.516 1.194 0.930 6.95

1/2 3 3.0 8 0.562 1. 205 0.930 6.95

7 O. 530 1. 175 0.389 4.94

6 0.326 0.915 1.0 3.69

12 0.580 1. 145 5.84 13.9

10 0.670 1. 182 8.90 15.6
1 4.5

8 0.588 1. 11 0 7.50 13.4

7 0.506 0.973 1. 60 6.26
1/3

12 0.639 1. 138 6.54 13.2

10 0.549 1. 107 7.50 13.4
3 2. 5

8 0.564 1. 116 7.50 13.4

7 0.584 1. 097 5.00 11. 6
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distribution and A
b

and (3 of the backsearch distribution. It may be

seen that, for R =1/2 and Q =3, the performance greatly deteriorates

for Nb = 6. For R = 1/3 and Q = 1 or 3, the performance for N b = 6

is so poor that the decoder can no longer decode the data fast enough

to make a computer simulation practical. This poor performance occurs

since there is not fine enough quantization to specify branch metrics

such that the incorrect paths are different enough from the correct

path, resulting in the decoder searching too many of the incorrect

paths.

4.3 DECODING RESYNCHRONIZATION

For a finit e forward buffer and backup buffer, it can be seen

f rom the computations distribution and the backsearch distribution

that the forward buffer may fill and overflow and the decoder may

at tempt a backsearch to the limit of the backup buffer. When either

of these two events occur, the decoding proces,s is interrupted and

mus t be resynchronized. The requirement necessary for resynchron­

izat ion is a memory length K of information bits without error to

restart the convolutional encoder used by the decoder on the correct

path.

The most familiar resynchronization scheme, and the simplest

conceptually, is block resynchronization. In this case, periodically,

a memory length of predetermined information bits is used to form the

tail of the block which is transmitted. Since any choice of information
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bits is allowed for the tail, usually a sequence with good correlat ion

propert ies is used (i. e., a pseudonoise sequence or a Barker sequence) .

Thus, acquisi tion of block synchronization (i. e., the location of the

block tail) is performed by searching the received symbols for the

known sequence spaced r-K branches apart, where r is the block

length. The traeking of block synchronization is performed by either

a delay lock loop or a tau jitter loop, both of' which are commonly used

in pulsed pseudonoise modulation systems. However, most NASA

manned missions already have transmitted synchronization sequences

for other subsystems. Therefore, block synchronization and branch

synchronization can be derived from the "system synchronization and

the complexity of acquisition and tracking will not be considered in this

study.

The complexity of block resynchronization is in the transmitter

where the data must be buffered during insertion of the tail sequenc e.

Since the tail is a memory length of information bits, a buffer the size

of the convolutional encoder is needed. However, the symbol rate is

not exactly 1/2 or 1/3 of the input data rate with block resynchronization,

and this may present problems in some systems. In many of the systems

considered, multiplexing is performed, and the symbol rate needed for

block resynchronization ceases to be a problem. The remaining disad­

vantage of block resynchronization is the rate loss due to the tail

sequence that transmits no information.
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Using the block resynchronization technique, when the decoding

process is interrupted, the remaining information bits in the block

are output to the data user. The decoder can now be moved to the

beginning of the next block. Since a memory length with predeter-

mined information digits was transmitted, the decoder can load its

encoder with these known information digits, and resynchronization

is achieved. The errors from the interruption of the decoding process

occur since the remaining undecoded information bits in the resyn-

chronization block are output with channel errors. Thus, the proba-

bility of error due to interruption of the decoding process is given by

the probability of decoding interruption multiplied by the average

number of errors each time the decoding process is interrupted.

(4. 5)

where

PI = probability of decoding interruption

P ue = probability of an undetected error per bit

p = probability of a channel error

= number of
block

decoded bits in a resynchron~zation

r 2 = number of undecoded bits in the resynchronization block
including the number of bits in the backup buffer

Since on the average about one-half the bits in the resynchronization

block have been examined before an overflow,

rl = (l/2)r - b

r 2 = (l/2)r + b
(4.6)
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where
1 = total nu:mber of bits in the resynchronization block

b = number of bits in the backup buffer

The probability of undetected error is nor:mally designed to be

negligible in co:mparison with either the probability of decoding inter-

ruption or the probability of channel error (Pue 11« p 12 ). Thus,

equation (4.5) :may be rewritten as:

for 1 2: K

P e = (l /2 1 + b )PrP

The rate for block resynchronization is given by:

l-K
RI = R(-I-)

(4. 7)

(4.8)

Another resynchroni zation sche:me that is possible is statistical

resynchronization. Using this sche:me, there is no rate loss, and the

sy:mbol rate :may be exactly 1/2 or 1/3 of the input data rate. Also,

there is no additional co:mplexity in the trans:mitter to handle the resyn-

chronization. For systems where trans:mitted synchronization is not

available, extra hardware to perfor:m acquisition and tracking of block

synchronization is not required. Thus, statistical resynchronization

can have a tre:mendous advantage in co:mplexity over block resynchron-

ization.

With statistical resynchronization, when a forward buffer overflow

occurs, the decoder is :moved fu_rther into the received data strea:m,

and hard decisions on a :me:mory length of information bits are used

to load the decoder's replica convolutional encoder to restart decoding.

For hard decision de:modulation, a resynchronization strategy is to
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establish the point of restart as the "origin" such that the decoder cannot

back up past it. The decoder is declared resynchronized when the backup

buffer is again filled. As in block resynchronization, channel errors

in the information bits are not corrected between buffer overflow and

resynchronization. The probability of error over this period is just
)

equal to the channel probability of error. If the computations required

to resynchronize are too large, then the choice of the hypothesis bits

used to load the decoder's replica encoder is probably incorrect, and

the resynchronization attempt should be rejected. A new resynchroni-

zation attempt is begun by moving the decoder farther into the received

data stream a specified number of branches.

For rate 1 /2 and hard decisions made on the demodulated symbols,

the probability of choosing a memory length of correct hypothesis bits

to load the replica is:

. K
P rt = (l - p) (4. 9)

For channel probability of error p = 0.045 corresponding to Eb/No =

4.6 dB and R = 1/2, P rt = 0.229 with memory length K = 32, and repeated

guessing would give a correct memory length of bits in about five trials

on the average. The decoder is allowed to return to the 11 origin" H

time s before it is rejected. Table 4. 7 presents the results of simula-

tions to measure the probability of resynchronization, where Phisrc

the probability that a resynchronization attempt is rejected with the

correct hypothesis bits in the replica encoder. It should be noted that
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Table 4. 7 Measured Probability of Resynchronization

Channel
Probability Memory Probability of Resynchronization

of Error Length H P rch
p K Predicted Measured

0.045 32 0.229 0.345 3 4.l6xlO- 3

0.281 2 1. 66xlO- 2

0.234 1 0.1
0.134 0 0.462

0.035 32 0.308 0.454 3 0
0.382 2 3.02xlO-3

0.338 1 3.92xlO- 2

0.222 0 0.365

the measured probability of resynchronization is considerably larger

for H > 1 than equation (4.9) predicts. The large measured proba-

bilities of resynchronization result from the ability of the decoder to

restart even when errors have occurred in the initial hypothesis bits

loaded into the replica encoder. The density of the possible errors in

the initial hypothesis bits loaded into the replica encoder that can occur

in a succes sful resynchronization attempt is illustrated in Figure 4. 11.

To produce the curves in Figure 4. II, each successful resynchron-

ization was tested for one or more errors in a group of five hypothesiS

bits. For example, if a successful resynchronization had an error in

the third and the seventh hypothesis bits, then the group of the 1 ~5 hypo-

thesis bits and the group of 6 -10 hypothesis bits would each be credited

wi th cont airing errors. The fraction of successful resynchronization

attempts having errors in groups of five is illustrated by horizontal
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lines in Figure 4.11. The curves connecting the horizontal lines are

drawn to illustrate the shape of the density. As H decreases, only

errors in the beginning of the initial hypothesis bits will allow the

decoder to resynchronize. This decrease in allowed positions of

errors within the initial hypothesis bits partly accounts for the decrease

in the probability of resynchronization as H decreases. The additional

decrease in probability of resynchronization as H decreases results

from the increase in P rch'

Resynchronization is declared when the decoder has again filled

the backup buffer because, at this point, as the decoder searches newly

received data, decoded bits must be released to the data user. By

simulation, it has been found that the computations distribution for

resynchronization is just the distribution to decode b bits if H = 3. How-

ever, the computations distribution for a resynchronization attempt that

will eventually be unsuccessful has an extremely large required number

of computations to advance b bits. Therefore, a strategy is to specify

a certain number of allowed computations. If the decoder exceeds the

specified number of computations, Gm , the resynchronization attempt

is rejected. Resynchronization of the decoder is achieved if:

(l)H.::sH
1

are both true, where:

Hi = the actual returns to the "origin"
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H = the allowed returns to the " origin"

C s = actual computations to accept a resynchronization
attempt.

Thus, to derive the probability of restart Pr(Cm ), the following develop-

ment can be used:

(4.10)

where P(Hi ::::; H) is the measured probability of resynchronization in

Table 4.7.

: (4.11)

where P(C s 2: Cm) = bP(C 2: Cm) and P(C 2: Cm) is the computations

distribution given in Section 4.2.2. Thus,

(4.12)

and
1

(4.13)

where Y(C m ) is the average number of attempts before the decoder is

resynchronized.

Equations (4.12) and (4. 13) assume that each resynchronization

attempt is independent of all others. To achieve this in a practical

design, the decoder must be advanced at least K+1 branches for each

resynchronization attempt. However, the decoder must output the in-

fo rmation bits in the backup buffer for the first resynchronization

attempt to be independent. Hence:

s = b + Y(Cm)(K + 1 + g) for g 2: 0 (4. 14)

where s is the number of information bits output to the data user with
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channel errors unoorrected. Also:

C m = S(J + K + 1 + g) (4.15)

where S is the speed advantage of the decoder, which is the number

of branches the decoder can examine for each branch received (i. e. ,

S =Rc/Rd where R c is the computation rate of the algorithm logic unit

and Rd is the data rate). The value of J in equation (4.15) is given by:

J - I. b J (4.16)- LlY(Cm ) + ~

Note LxJ is the smallest integer contained in x.

The decoder resynchronization design procedure is to minimize

s with respect to Cm. However, since Y(Cm ) is a complex function of

Cm , the derivative is not easily obtained, and the equation for C m con-

tains functions of C m on each side of the equation. Hence, the solution

for the minimum value of s is most easily found by an iterative procedure.

An iterative procedure for finding the minimum value of s is as

follows:

1. Let g = 0 and compute Y(C m ) for C m = S(K + 1).

2. Using the integer value of (Y(C m + 1), recompute C m

using equation (.4. 15).

3. Recompute Y(C m ) with the value of Cm from step 2.

4. If the integer value of (Y(C m ) + 1') is the same as the

value of step 2, compute s. Otherwise, using the new

integer value (Y(Cm ) + 1), go to step 2 and repeat the

procedure.
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5. Using J computed in step 4 (equation (4.16) as part of

the computation of s), compute C m for g = 1, Crn =

S(J + K + 2). Compute Y(C m ) using this value of Cm'

If the integer value of Y(C m ) + 1 is not the same as

the value in step 4, go to step 2 with g = l.

6. Compute s for g = 1. If s is larger than the value obtained

in step 4, stop and use the parameters corresponding to

g = O. Otherwise, minimize a with respect to Crn =

S(K + 1 + g) for integer values of g. Compute J using

the new integer value of (Y(C m ) + l), and the design

value gd will be g - J.

The statistical resynchronization strategy for three-bit quantization

on the demodulated symbols is to make hard decisions on the information

bits for loading the decoder's replica convolutional encoder while the

remaining quantization is used as a reliability measure on the bits.

An information bit is said to be questionable if the reliability quantiza­

tion bits are 00 (i. e., the two quantization levels closest to zero). If

there are more than N E questionable information bits in the bits to be

loaded in the replica encoder, then the decoder is moved one position

further into the received data stream to test another K information bits

to load the replica encoder. The value of N E is chosen to minimize

the number of information bits output to the data user with channel

errors uncorrected. When acceptable K information bits are found,
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the decoder is restarted with this point as the "origin." The decoder

is allowed a given number of computations to decode b (backup buffer

size) information bits. If the decoder exceeds the allowed number of

computations, then one of the most questionable information bits is

complemented and the decoder is again resta·rted. When all combina-

tions of the questionable bits are tried and the decoder has again exceeded

the allowed number of computations, the decoder is moved further into

the received data stream to test another K information bits to load

the replica encoder. The decoder is declared resynchronized if b in-

formation bits are decoded within the allowed number of computations.

The probability of resynchronization if only hard decision informa-

tion is used is given by:

(4. 17)

If only NE questionable bits are allowed for a resynchronization attempt

then the probability of re13'ynchronization for a selected K information

bits is given by:

(4.18)

The value of PO is the probability of error with high reliability (i. e .•

an error in one of the remaining three highest quantization levels).

The probability of selecting an acceptable set of K information bits is:

(4. 19)

The value PI is the probability of an information bit having low

re liabili ty.
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The decoder is moved b branches further into the data stream

before the first resynchronization attempt. At this point, the set of

K information bits is tested. If this set is not acceptable, then the

decoder is moved one more branch into the data stream. On the average,

L = r1 /P~ branches are examined before a set of information bits is

loaded into the decoder's replica convolutional encoder. Therefore,

the allowed number of computations, Gm , for the first resynchroni­

zation attempt is:

Gm = S(b + L) (4.20)

where S is the speed advantage of the decoder. After the first attempt,

the decoder is advanced at least K+1 branches before a set of K infor­

mation bits is tested for the next attempt. Thus, the number of com­

putations allowed for the second and following attempts is:

Gm = S(K + 1 + g + L) (4.21 )

where the value of g is used to optimize the number of allowed compu­

tations. The number of information bits output, on the average, to the

data user with the channel errors uncorrected is:

I = b + L + (K + 1 + g + L) (l - P;s>./Prs (4.22)

The value of P~s is the probability of resynchronization on the first

attempt.

A comparison of block and statistical resynchronization for com­

plexity and pE;lrformance is contained in the following sections, where

the parameters of the sequential decoder are defined.
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4.4 COMPLEXITY OF THE SEQUENTIAL DECODER

The sequential decoder algorithm was presented in Section 4. 1.

To obtain the complexity of the algorithm logic, a detailed algorithm

logic flow diagram is presented in Figure 4.12. In this section, the

complexity of each block in the flow diagram will be found to give an

overall complexity of the decoder. The flow diagram in Figure 4. 12

is for the TTL logic. However, for the high data rate (9.1 Mbps), a

1ar ge forward buffer is needed. Several manufacturers pres ently have

available large random-access memories on cards with a read/write

cycle time of 400 nanoseconds. Using the MECL III algorithm logic

unit for this 9.1 Mbps data rate, 110 million branches/second is to be

processed. Therefore, the CPU buffer must store 44 branches in high

speed memory. In this case, each time the decoder reaches a new

branch, the CPU buffer address counter is incremented. When the

CPU buffer is empty, the address counter requests another 44 branches

to be read from the forward buffer. Otherwise, the MECL III algorithm

logic has the same flow as the TTL logic.

The data received from the demodulator is stored until all n quan­

tized symbols for a rate l/n code are received. Thus, nQ bits of

storage are necessary to collect the quantized data to be stored in the

forward buffer. When all n symbols have been received, the data clock

increments the forward buffer input address counter. A branch of data

is read out of the forward buffer when the decoder moves forward and
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increments the output address counter. The data to be read into the

forward buffer has the highest priority so that no data is lost. A com-

parator is hard-wired between the two address counters to detect when

the buffer is full or empty. The complexity associated with the inputting

of data is:

for TTL where B is the forward buffer size in branches. For MEG L III,

the complexity associated with the input is:

INPUT = nQ(B+44) + 3 f1og2Bl + 7(nQ(44)+6) (4.24)

where the last term represents the GPU buffer and addressing. The

constant 7 is the relative weight of the MEG L III co st including parts,

design, and packaging with respect to TTL. This weighting is a subjec­

tive judgment on the part of the author and should not be considered exact.

The relative weighting will change with the changing cost of parts, new

MSI announcements, and experience using logic families.

The backup address counter receives the move forward and the

move back signals to count up or down. A comparator is used to detect

when the backup address counter equals the backup input address counter.

If the two counters are equal and a move back signal is present, then

the backup buffer overflows. Otherwise, if the counters are equal, a

signal is generated by the comparator to read a new branch from the

forward buffer and a·new branch into the backup buffer. As a new branch

is read into the backup buffer, the hypothesis bit in the input address
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location is read out to become the decoded bit to the data us er. The

complexity of the backup portion of the decoder is:

BACKUP = (nQ+ l)b + 3 rlog2bl (4. 25)

where b is the backup buffer size in branches. For the MECL III

decoder, the complexity in equation (4.25) is multiplied by seven.

To generate the branch metric, a pres ent branch and a past branch

are stored. If the signal for the new branch is generated from the

backup comparator, then the present branch is used to compute the

metric interval; otherwise, the past branch is used. The convolutional

encoder generates the branches along the path. To compute the metric

interval, the convolutional encoder shifts in a zero. If the decoder

moves along the branch, then the bit corresponding to the best metric is

inserted into the convolutional encoder in place of the zero used initially.

The metric interval is computed by "exclusive-OR" -ing the sign bits of

the appropriate quantized branch with the output of the convolutional

encoder for an input zero. The metric interval is used as the address

to the metric table producing as its output the hypothesis bit for the

best branch, the best branch metric, and the difference metric, requir­

ing a total of 2Nb +l bits for each entry in the metric table. The best

metric is transferred to the p,resent metric accumulator to be added.

If the decoder backed up and then moves forward along the worse branch,

then the difference metric is added to the present metric accumulator

(the difference metric is actually negative so the effect is to obtain
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the branch metric for the worse branch}. If, as the decoder backs

up, the hypothesis bit does not correspond to the best branch metric,

then a signal is sent to the past metric accumulator comparator to

- check the accumulator value for the direction of the next move. The

complexity of determining the hypothesis bits and the branch metrics

for the accumulator is:

HYPOTHESIS = n(3Q+l+K) + (2nQ+l}(2Nb+l) (4.26)

The first term represents the branch storage, the metric interval

computation and the convolutional encoder. The convolutional encoder

is implemented as the convolutional impulse response with a K stage

shift register for the past hypothesis bits. While this implementation

is slightly more complex than usual, it has the advantage of only one gate

delay and is used for high speed computation. The second term in equa­

tion (4. 26) is the metric table and storage for the output branch metric.

The m.etric accumulators must be large enough to allow the decoder

to move through a very noisy segment of the received data. To obtain

a bound on this quantity, let Wm equal the branch metric corresponding

to n symbol metrics with the metric interval 011. This is the most

positive metric. Therefore, if there were no noise on the channel, then

the decoder could back to the end of the backup buffer and return to the

front with, at most, a metric of Wmb. Thus, the metric accumulator

need not be larger than rOg2Wmbl plus a sign bit. The past metric

comparator only detects the sign bit of the accumulator. The pres ent
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metric comparator detects the sign bit and if the accumulator is less

than 6.. Hence, the complexity of the present metric comparator is

rlOg2Wm~ + 1. As the decoder moves forward and backward, the past

met;ric is parallel transferred to the present metric and vice versa.

The direction the decoder moves is determined by the values of the

accumulators. If the present metric accumulator become s negative,

the past metric accumulator is compared. If both metrics are negative.

then 6. is added to the past metric and Q is set to one. If only the pre-

sent metric is negative, then a move back signal is generated. If the

present metric is positive, then a move forward signal is generated.

When the present metric is greater than or equal to 6. and Q = 0, then

6. is subtracted from the present metric. The complexity of metric

accumulators, transfers, and comparators is:

(4.27)

The overall complexity of the sequential decoder is given by:

DECODER = nQ(B+l) + 3 rlog2Bl + (nQ+l)b + 3 flog2 bl

+ n(3Q+l+K) + (ZnQ+l)(2Nb +l)

+ 5( rlogZWmbl + 1) + 4 (4.28)

using TTL. For MECL III, the complexity is:

DECODER = nQ(B+44) + 3 rlog 2B1+ 7 nQ(44)+6+triQ+l)b

+ 3 rl0g2~. + n(3Q+l+K) + (2
nQ

+l)(2Nb +l)

+ 5( rlog2Wmbl + 1)+4 (4.29)

These equations do not include the external complexity required for branch

synchronization or resynchronization after a decoding interruption.
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The size of the forward buffer and the backup buffer can be deter-

mined from the computations distribution and the backsearch distribu-

tion, respectively. The computations distribution determines the size

of the forward buffer by determining the probability of forward buffer

overflow, Po. It has been found that Po can be approximated by:

(4.30)

where B is the number of branches that can be stored in the forward

buffer and S is the speed advantage. Equation (4.30) is a good approxi-

mation for a 2:: 1, S 2:: 10, and B < 106 . For a < 1, the speed advantage

must be larger than the average number of computations, which grows

exponentially as a is decreased below one. The computation of the

algorithm logic is 12.5, 25, and 100 million computations per second

using TTL, MECL II, and MECL III logic families, respectively.

The size of the backup buffer in branches is given by:

(4. 31)

where P s is the probability of the decoder reaching the end of the backup

buffer due to a backsearch. The parameters A c ' a, A b and ~ are given

in Tables 4.4, 4. 5 and 4. 6.

A reasonable design value for both Po and P s is 10- 6 if the desired

probability of error per bit is to be 10-4 . Using these design values,

Table 4.8 presents the size of the metric table, the forward buffer, and

the backup buffer for various data rates and values of Nb. The number

of storage bits in the forward buffer is nOB and the number of storage
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bits in the backup buffer is (nQ+l lb. Also, the parameters for the

minimum implementation complexity is indicated for various data

rates. For example, with R = 1/2 and Q =3, the minimum implemen­

tation complexity corresponds to N b = 8 for all data rates. However,

for R = 1/3 and Q = 3, the minimum implem.entation com.plexity corre­

sponds to Nt> = 7 for the 19. 2 kbps and the 38.4 kbps data rates and to

Nb = 8 for the remaining data rates.

4.4.2 Decoding Resynchronization Complexity

The block and resynchronization schemes are evaluated with respect

to performance and complexity in this section. Using equations (4.7)

and (4.8) in conjunction with size of the forward buffer and backup

buffers given in Table 4. 8, the performance of block resynchronization

can be determined. The probability of decoding interruption PI is equal

to the sum of Po and P s since this sum is much less than one.

By optimizing with respect to block length r, it is found that, for

R = 1/2, the best value of r is 1024 branches, which is better than 512

or 2048 branches by O. 1 dB in E b /No ' For R = 1/3, r = 1024 branches

s till gives the best performance, but r = 512 branches gives as good a

pe rformance while r = 2048 branches is about O. 1 dB in Eb/No worse.

Figure 4. 13 presents the performance using r = 1024 branches for

R = 1/2 and 1/3, Q = 1 and 3 bit quantization. At output probability

of error equal to 10-4 , Table 4.9 summarizes the performance.

Statistical resynchronization provides significant performance

improvement over the block resynchron,ization performance summarized
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Figure 4.13 Sequential Decoder Performance Using Block
Resynchronization with Code Rate Rand Q Bits

of Quantization



Table 4.9 Performance of Sequential Decoding Using Block
Resynchroni zation at Pe = 10-4
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Received Required Coding Gain
Code Symbol Eb/N o over Ideal
Rate Quanti zation Coherent PSK

R Q (bits) (dB) (dB)

1 4.95 3.45
1/2

3 3.2 5.2

1 4.6 3.8
1/3

3 2.7 5.7

in Table 4.9. By using the iterative design procedure presented in

Section 4.3, it is found that the minimum value of s is 280 for Eb/N 0

=4.6 dB with K = 32 and b = 182 branches, while the minimum value

of s is 255 for Eb/No = 5.2 dB. Since the speed advantages obtained,

even using TTL with four-voice channels, are so large, the minimum

value of s does not decrease as the speed advantage is increased.

For comparison of the two resynchronization techniques, Figure

4. 14 presents the pe:r:formance of each technique for the rate 1 I 2 hard

decision decoder with K = 32, b = 182, B = 198, S = 651, and the block

size r = 1024 branches, which gives the best performance for block

resynchronization. It is seen that statistical resynchronization has

0.38 dB better performance than block resynchronization at an output

probability of error per bit ,of 10-4 • Thus, the rate 1/2 hard decision

decoder with statistical resynchronization has a coding gain of 3.8 dB

over the uncoded ideal coherent PSK.



115

10- i----r---r--........--....---~--....__-__,--_r_-__,

10

BLOCK
RESYNCH.

STATISTICAL
RESYNCH.-~

10-6 L.-_-L._---JL-..._..1----'~__~_ __L__...I..__ __L....L..___J

2 4 6 8
Eb/No (dB)

Figure 4. 14 Comparison of the Performance of Sequential
Decoding Using Block Resynchronization and
Statistical Resynchronization
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For rate 1/3 and hard decisions on the demodulated symbols,

the probability of resynchronization, P rt , can somewhat pessimistically

be expressed as Prt = (l_p)K where p is the channel probability of error

per symbol. For K = 23 and Eb/No =4, 4.5, and 5 dB, using coherent

PSK modulation, the probability Prt is equal to 0.093, 0.126, and 0.218,

respectively. Again by using the iterative design procedure, the number

of information bits output to the data user with the channel erro rs uncor­

rected is, on the average, 374, 305, and 225 for Eb/No = 4, 4.5, and

5 dB, respectively. This design assumes a backup buffer of 114 branches.

As an example of the performance of statistical resynchronization

with three-bit quantization, consider the 19.2 kbps data rate using TTL

giving a speed advantage of 651. For rate 1/2 with memory length K = 44

and b = 193 at Eb/No = 3.0 dB, the design that minimizes I is N E = 4 and

g = 0, giving I = 306. If only hard decision information is used, the

equivalent I equals 1423, compared with 705 using block resynchroni­

zation. For ·rate 1/3 with memory length K = 23 and b = 122 at Eb/No

= 2. 5 dB, the design that minimizes I is N E = 3 and g = 0, resulting

in I = 191. The equivalent value of I, using only hard decision informa­

tion, is 870 compared with 634 using block resynchronization.

Table 4. 10 summarizes the performance of statistical resynchron­

ization at output probability of error per bit of 10-4 . The improvement

by using statistical resynchronization over block resynchronization is

0.4 dB for code rate 1/2 and 0.2 dB for code rate 1/3 with hard
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d.ecisions demodulation and 0.3 dB with three-bit quantization.

Table 4. 10 Performance of Sequential Decoding Using
Statistical Resynchronization at P e = 10-4

Required Coding Gain
Code Symbol Eb/No over Ideal
Rate Quantization Coherent PSK

R Q (bits) (dB) (dB)

1 4.55 3.85
1/2

3 2.8 5.6

1 4.4 4.0
1/3

3 2.4 6.0

To implement st atistical resynchronization, an alternate technique

can be us ed to handle the decoder backing up to the end of the backup

buffer. In a majority of the cases, when the sequential decoder

searches to the end of the backup buffer, the decoder is following

the transmit ted path. Therefore, treating the end of the backup

buffer as the origin of the code tree, the path metric is increased

by fj. and the decoder searches forward. However, if the decoder

is not following the transmitted path when the end of the backup

buffer is reached, then treating the end of the backup buffer as the

origin will result in either an undetected error or, more likely,

a forward buffer overflow. Using this technique, it can be assumed

that the probability of decoding interruption PI is the same as before

(i. e., PI = Po + Ps ) but all decoding interruptions will occur as for-

ward buffer overflows. The sequential decoder using this technique
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can be designed with an output buffer of B bits. The output buffer pro­

vides the interface between the decoder and the data user so that the

data user may receive data at a constant rate. The output buffer is

full if the forward buffer is empty, and the output buffer is empty if

the forward buffer is full. Therefore, if the forward buffer is full,

then a decoding interruption occurs and b undecoded information bits

are shifted out of the backup buffer into the empty output buffer. Note

that the sequential decoder design should be for more branches in the

forward buffer than in the backup buffer if this technique is used.

As the b bits are shifted into the output buffer undecoded, b bran­

ches are shifted into the backup buffer from the forward buffer. For

the hard decision case, the last K bits shifted into the output buffer

are also shifted into the convolutional encoder to restart the decoding

process. Resynchronization is declared when the decoder reaches

the front of the backup buffer and a new branch is requested from the

forward buffer. If K+l" branches are received before resynchronization

is declared, then K+l bits are shifted undecoded out of the backup buffer

into the output buffer with the last K bits also being shifted into the

convolutional encoder to restart the decoder for another resynchroniza­

tion attempt. As the K+l bits are shifted out of the backup buffer, K+l

branches are shifted from the forward buffer into the backup buffer.

Thus, the complexity for the hard decision case is one bit to record
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overflow, one bit to record resynchronization, and a gate so that, if

resynchronization is in process, an overflow can only reject the

resynchronization atteITlpt. In addition, the B bit output buffer shift

register and a counter of f10g2K+ll bits to indicate that K+l bits

have been received are needed. Thus, the total hard decision statis-

tical resynchronization cOITlplexity is:

Resynchronization = B + rIOg2K+~ + 3 (4.32)

For the three-bit quantization case, as the b bits are shifted into

the output buffer, the last K quantized inforITlation bits are shifted

into an exaITlination buffer. In this exaITlination buffer, the reliability

bits are exaITlined for 00. If there are NE or less inforITlation bits

with 00 reliability bits, then the inforITlation bits are loaded into the

convolutional encoder and the decoding is restarted. If there are

ITlore than NE inforITlation bits with 00 reliability bits, then a quan­

tized inforITlation bit is shifted froITl the backup buffer into the exaITli­

:ration buffer. Also, an undecoded bit is shifted froITl the backup

buffer to the output buffer and a branch is shifted froITl the forward

buffer to the backup buffer. After a resynchi'onization atteITlpt has

begun, if the decoder returns three tiITles to the end of the backup

buffer, then the state of an NE bit counter is exc1usive-ORed with

the bits of 00 reliability if the counter has not exceeded its allowed

count. The allowed count of the NE bit counter is 2N , where N is

the actual nUITlber of inforITlation bits with 00 reliability. If K+l
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branches are received before resynchronization is declared, then K+l

bits are shifted undecoded out of the backup buffer into the output buffer

with the last K quantized information bits into the examination buffer.

The complexity for the three-bit quantization is then the complexity

for the hard decision case plus the examination buffer and logic. Thus,

the total three-bit quantization statistical resynchronization complexity

is:
Resynchronization = B + rlog2(K+l~ + 6 + 3(K+NE )

Block resynchronization also requires the B bit output buffer.

(4.33)

The beginning of the blocks may have to be tracked and initially

required if this is not incorporated into the system synchronization.

In addition, the data in the transmitter must be buffered during insertion

of the tail sequence. Thus, because of the relative simplicity of statis­

tical resynchronization and its performance improvement over block

resynchronization, only statistical resynchronization will be considered

in the complexity of the sequential decoder.

4.5 PERFORMANCE VERSUS COMPLEXITY

The complexity of the sequential decoder with statistical resyn­

chronization has been specified by equations in the previous section.

Using these equations and the forward buffer size, the backup buffer

size and the metric table size given in Table 4.8, the complexity

can be calculated. Table 4. 11 presents a summary of the sequential

decoder complexity with statistical resynchronization with the required
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TABLE 4. 11 Overall Complexity of Sequential Decoder for Various
Data Rates at Output Probability of Error per Bit of 10-4

Received Sequential

Code Symbol Eb/No Data Decoder

Rate Quantization Rate Complexity

R Q (bits) (dB) kbps (c omplexity bits)

19.2 1,364

38.4 1,961

1 4.55 57.6 2,558

76.8 3, 122

3
40,9339.1xl0

1/2
19.2 3,528

38.4 4,077

3 3.8 57.6 4, 706

76.8 5,343

9.1xl03 58,391

19.2 1,633

38.4 2,448

1 4.4 57.6 3,209

76.8 3,977

9.1xl03 52,526

1/3
19.2 11, 589

38.4 13,981

3 2.4 57.6 16,058

76.8 18,038

9.1xl03 190,268
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Eb/No to obtain an output probability of error per bit of 10-4 in con­

junction with the ideal coherent PSK channel. The complexity for

rate 1/3 and Q = 1 is somewhat greater than rate 1/2 and Q = 1 with

only 0.15 dB improvement in the required Eb/No' There is an 0.4

dB gain of the rate 113 over the rate 1/2 with Q =3, but the complexity

is about four times larger for the rate 1/3.



SECTION 5.0

VITERBI AND SEQUENTIAL DECODER PERFORMANCE
VERSUS COMPLEXITY

In the preceding sections, the performance for the Viterbi and

sequential decoders was presented from simulation results. The com-

plexity of these decoders was presented in terms of complexity bits by

equations so that many other data rates and system parameters may

be determined for future systems. From careful analysis of the various

portions of each decoder, the number of integrated circuit chips can be

determined for some logic family and hence the cost. As an example,

the complexity of 9.1 Mbps data rate decoder with R = 1/2, K = 3, and

Q =3 is 1,378 complexity bits and requires 180 TTL integrated circuit

chips. Alternately, a 9.1 Mbps data rate decoder with R = 1/2, K = 8,

and Q = 3 has a complexity of 33,818 complexity bits and requires about

5500 TTL integrated circuit chips.

Using the complexity measure described in this report, a per-

formance versus complexity comparison can be made f~r the Viterbi

and sequentlal decoders. Figures 5.1 and 5.2 present the comparison

for R = 1/2 and 1/3,respectively. For rate 1/2 and hard decisions

on the demodulated symbols and the same complexity, the sequential

decoder requires 1.3 dB less Eb/No than the Viterbi decoder at the

19.2 kbps data rate and an output probability of error per bit of 10-4 .

1i3
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K=3

19.2-76.8 kbps

Viterbi Decoding

K=3

. >( 76.8 kbps
*57.6
I

~ 38. 4
I*19.2 kbps

Sequential Decoding

19.2-76.8 kbps -_~

Q=3

76.8 kbPf
7. 6 ~
8.4 k

19.2 k

7.06.03.0

1021--_......__.......__&....._....&.__-&..__"'--_....&__-&..__""'--_---1__....

2.0

Figure 5. 1 Cotnparison of Cotnplexity Versus Perfortnance of Viterbi
Decoding and Sequential Decoding With Code Rate 1/2 and
Output Probability of Error Per Bit of 10-4
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___ Viterbi Decoding

____Sequential Decoding

~ 76.8 kbps
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1'38. =

104 *19.2

0=3
0'=1
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E-l
H

r76.8 kb s~

~ *57.6E-l
H I

19.2-76.8 kbps>< '38.4
~
~ I

~
,
t19.2

U
103

19.2-76.8 kbps

7.06.04.0 5.0
'Eb/No (dB)

3.0
1 02 __......._--"__......_ ......__~ -a...--.......---"---'----

2.0

Figure 5. 2 Comparison of Complexity Versus Performance of Viterbi
Decoding and Sequential Decoding With Code Rate 1/3 and
Output Probability of Error Per Bit of 10-4 '
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For the 76.8 kbps data rate and the same complexity, the sequential

decoder requires 1 dB less Eb/N than the Viterbi decoder. Even for
o '

the high 9. 1 Mbps data rate, the sequential decoder requires 0.5 dB

less Eb/No to achieve an output probability of error per bit of 10-4

than the Viterbi decoder.

As the code rate is decreased and as the quantization on the

demodulated signals is increased, the Viterbi decoder performance

for a given complexity improves in relation to the sequential decoder

since the sequential decoder must store the quantized demodulated

symbols in its buffers while the Viterbi decoder does not. Even so, for

rate 1/2 with three-bit quantization on the demodulated symbols, the

sequential decoder requires 0.8 dB less Eb/No to obtain a 10-4 proba-

bility of error per bit than the Viterbi decoder for the same complexity

at the 19.2 kbps data rate. Alternately, to achieve the same perform-

ance, the Viterbi decoder requires almost four times the complexity

of the sequential decoder. For the 76.8 kbps data rate, the sequential

decoder requires 0.65 dB less Eb/No than theViterbi decoder of the

same complexity or a Viterbi decoder must have three times the com-

plexity to achieve the same performance as the sequential decoder.

However, for the 9. 1 Mbps data rate, the Viterbi decoder only requi res

half the complexity to achieve the same performance as the sequential

decoder.
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For rate 1/3 with three-bit quantization on the demodulated sym­

bols, the sequential decoder still requires 0.5 dB less Eb/No to achieve

a 10-4 probability of error per bit than the Viterbi decoder at the 19.2

kbps data rate. For rate 113 and Q = I, the sequential decoder for data

rate 19.2 to 76.8 kbps has an improvement in required Eb/No from 1. 05

to 0.75 dB compared to the Viterbi decoder with the same complexity.

Finally, it is found that, for Q = 3, a sequential decoder with

a code rate of 112 has an improvement in required Eb/No of 0.45 dB

to 0.3 dB over a Viterbi decoder with a code rate 113. and the same

complexity for data rates from 19.2 kbps to 76.8 kbps.

Decoding delay is of concern for some systems. However, the

decoding delay for the sequential and Viterbi decoders is negligibly

small even for the low 19.2 kbps data rate. In fact, the decoding delay

for the sequential decoder at the 19.2 kbps data rate is only 19.8 milli­

seconds.



SECTION 6.0

AREAS FOR FURTHER STUDY

The present study has been concerned with the complexity and

performance of channel coding (i. e., Viterbi and sequential decoding

of convolutional codes) considering an ideal coherent PSK channel.

However, to completely evaluate the performance of the channel coding

in a system, the characteristics of the interface between the demodu­

lation and the channel coding and of the interface between the channel

coding and the data compression or source coding must be evaluated.

Appendix II describes techniques to derive branch synchronization

needed for Viterbi and sequential decoding and techniques to resolve

reference phase ambiguity due to Costas loop suppres sed carrier track­

ing for both biphase and quadriphase modulation. One technique for

reference phase ambiguity resolution is the use of transparent codes

as described in Sections 2. 0 and 3.2. There is a need to study trans­

parent codes to obtain II good" for the code memory lengths of interest

for Viterbi and sequential decoding. Also, the branch synchronization

techniques need to be investigated in order to obtain the performance

of these techniques for good convolutional codes as a function of design

parameters. The best method to study these areas is by computer

simulation due to the large variety of codes and code memory lengths

to be investigated.

128
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Other areas of further study related to the demodulation-channel

coding interface are the best choice of threshold spacing for three - bit

quantization when quadriphase modulation is used, the sensitivity of

AGC inaccuracies on Viterbi and sequential decoders, and the effects

of the noise statistics out of the Costas tracking loop on the decoder.

The last area, concerning the effects of Costas loop tracking nois e

statistics, has had very little study. Initial work was performed by

Cahn, Huth and Moore9 for the sequential decoder that identified some

of the problems. The solution to handle the correlated noise statistics

out of the Costas loop is to properly choose the branch metrics and

convolutional codes that perform well with these statistics. Phase

jitter of the Inodulator and doppler due to velocity and acceleration of

the communication terminals should be examined for their effects on the

Costas loop noise statistics and hence on the decoder. The best method

for studying each of these areas is by computer simulation, since there

are a large number of parameters to be varied.

In considering the interface between the channel coding and the

source coding, the error burst distribution and the probability of error

become important considerations, depending on the type of the source

coding and the type of the source. For example, using scan-by-scan

polynomial compression of a video signal, it is more desirable to have

the errors occur in bursts rather than randomly. In this case, a burst

of errors causes a loss of the scan but, with end of scan coding, other
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scans are unaffected. Ideal codes for this type of source coding are

convolutional codes since, when output errors occur, the errors occur

in bursts.

In general, the more compression obtained by source coding, the

higher the sensitivity of the source coding to errors and to error burst

distribution. For these high compression techniques, the channel coding

characteristics must be carefully considered. In some cases, pseudo­

random interleaving is necessary between the channel coding and the

source coding to provide a random distribution of errors. This inc reas e

in complexity must be considered in the overall system optimization,

weighting the gains obtained by the channel and source coding. Thus,

the requirements of the various source coding techniques in terms of

data rate, allowed probability of error, and error burst distribution

must be evaluated to determine the performance of the channel coding

and source coding combination.
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APPENDIX I

TRANSFER FUNCTIONS OF CONVOLUTIONAL CODES

The transfer function of a convolutional code is obtained by

considering the modified state diagram of the code as a signal flow

graph and using the general techniques discus sed in numerous text-

books, such as Cheng, * and is summarized in the following.

An input variable is represented by a source node which has

only outgoing branches; an output variable is represented by a sink

node with only incoming branches. A path leading from a source node

to a sink node without passing any node more than once is called an

open path (also called a forward path).

In a general flow graph, there may be more than one open path

between a source node and a sink node.

On the other hand, a feedback loop (or simply a loop) is a closed

path. The loop transmittance of a feedback loop is defined as the product

of the transmittanc es (or individual transfer functions) of the branches

forming the loop.

The general formula for graph transmittance between a source

node and a sink node in a signal flow graphis:

T = l/il" T·il.L.J 1 1
i

(I -1)

>:<D. K. Cheng. Analysis of Linear Systems, Addison-Wesley, 1959.

I-I



where:

1-2

A = I - (sum of all loop transmittances)

+ (sum of all products of loop transmittances of all
possible nontouching feedback loops taken two at
a time)

- (sum of all products of loop transmittances of all
possible nontouching feedback loops taken three
at a time)

+

A. = value of A for that part of the graph not touching the
1

ith open path

T i = path transmittance of the ith open path,

The summation is taken over all open paths between the source

node and the sink node under consideration.

This general formula for a transfer function can now be applied

to find the transfer function of the modified state diagram such as that

shown in Figure 3.10, First, there are 11 feedback loops (loops) in.

the modified state diagram. Thes e loops and their loop transmittances

are:

(h) L 1 = LND 2 (bdhge) L 7 = LSN3n 2

(cf) L-Z = L 2ND 2 (bcfdg·e) La = L6N3n 6

(bee) L 3 = L3Nn 2 (bdgfce) L9 = L 6N3n 6

L3N2n 4 L7N4n 4
(1-2)

(fdg) L
4 = (bcfdhge) L 10 =

(fdhg) L S = L4N3n 2 (bdhgfce) L ll = L 7N4 n4

(bdge) L6 = L4 N2n 4

From these loop transmittances, ~ is found to be:
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11

~ = 1 L L i + L1(LZ+L3+L4+L6+LS+L9) + L Z(L6 +L 7 )
i:= 1

(I -3)

By substituting the values of the loop transmittances into equation

(I -3) and simplifying:

~ = 1 - LNnZ (l + L t L Z + L 3N Z _L3N2n4+L4N2 _ L 4 N 2n 4 )

(I -4)

There are seven (7) open path transmittances. These open

paths with their transmittances T i and D.. are:
1

(abce) T
1 = L

4
Nn

6

D.1 = 1 - (L
1

+ L 4 +LS) + L
1

L
4

D. 1 = 1 _ LNn2(ltL2Nn2+L3N2_L3N2n4)

(abdge) T2 = L SN 2n S

D. 2 = 1 - (L 1tL 2 ) + L 1L 2

D. 2 = 1 _ LNn 2 _ L 2ND 2 + L 3 N 2n 4

(abdhge) T 3 = L 6N 3n 6

D.3 = 1 - L2 = 1 - L 2ND 2

(abcfdge) T 4 = L 7N 3n 1O

6 4 = 1 - L 1 = 1 - LNn 2

(abcfdhge) T S = L 8 N 4n 8

6 S = 1

(abdgfce) T 6 = L 7N 3n 1O

66 = 1 - L 1 = 1 - LNn 2

(I -S)

(I -6)

(I -7)

(I -8)

(I -9)

(I -10)



(abdhgfce) T 7 = L 8 N4n 8

6.7 = 1

1-4

(I -11)

By taking the sUInmation over the open path transmittances

and simplifying:

7

S = E
i=l

(I -12)

Hence, combining equations (I-I), (1-4), and (1-12):

s
= 6. =T(L,N,n)

l-LNn 2( 1+L+'L2+L3N2_L3N2n4+L4 N 2_ L 4 N 2n 4)

= L 4Nn 6(l+L2N 2) + L 5N 2n 8 1+L+L2(l+N 2) + 2L3N 2

(I -13)

The infinite series obtained by dividing the numerator by the denominator

enumerates the paths in the state diagram leaving the all-zeroes state

and eventually returning to the all-zeroes state. From the series, as

can be verified by examining the state diagram, there are two paths of

weight 6, one of length 4 produced by a single input one, and one of length

6 produced by three input ones. There are no paths of weight 7, but

there are ten paths of weight 8. The transfer function is, then, the

closed form of the infinite series that defines the structure of the con-

volutional code.



APPENDIX II

TECHNIQUES OF BRANCH AND REFERENCE PHASE
SYNCHRONI ZATION

The interface problems between coherent PSK demodulation

and the convolutional code decoder are the refer ence phas e ambiguity

and branch synchronization. These interface problems may be solved

us ing either transparent codes and differential coding or nontrans-

parent codes.

For biphase modulation, the incorrect reference phase could

be corrected before the decoding by using differential coding after

the encoding and before the decoding. However, since differential

coding produces two errors for each single channel error, the effect

of placing the differential coding before the decoder is to double the

error rate into the decoder. The decoder normally operates where

twice the symbol error rate into the decoder results in the los s of

several dB in signal energy per bit/single-sided noise density (Eb/No )'

Using a transparent code and differential coding before the encoding and

after the decoding, at most, ':< a double rate out of the decoder results.

Since error rate is low at the output of the decoder, twice the error rate

-4results in" only a very small degradation; typically, at 10 error rate,

less than O. 1 dB for sequential decoding and about 0.3 dB for Viterbi

decoding wi th code memory length of K = 4.

':< Simulations indicate a smaller loss due to clustered errors output from
the Viterbi maximum likelihood decoder and the sequential decoder.

II-I
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An incorrect reference phase can be corrected using a nontrans­

parent code by detecting that no correct code word exists. This situation

is detected by an increase in the growth rate of the best metric in the

Viterbi decoder or an excess number of metric threshold releases in

the sequential decoder. By using a simple up-down counter, the rate

of best metric increase or the metric threshold releases can be mea-

,sur ed. For the Viterbi decoder, each time a branch is received, the

counter is counted down by one to a minimum of zero; the countel1 is

counted up by N each tfme the metric accumulators are normalized.

If the counter counts up to some threshold T, then an incorrect refer­

ence phase is 'declared and the incoming symbols are complemented.

The parameters Nand T determine the probability of detection, proba­

bility of false alarm, and the time to detect an incorrect reference

phase. For sequential decoding, the counter counts up each time the

metric threshold is released, and each time the metric threshold is

tightened, the counter counts down to a minimum of zero. If the counter

counts up to the maximum of the counter,. then an incorrect reference

phase is declared. The probability of detection, the probability of

false alarm, and the time to detect an incorrect reference phase are

determined from the size of the counter, the bias in the sequential

decoder metric, and the metric threshold spacing.

A branch for code rate lin is the n symbols associated with each

information bit to be transmitted. Thus, branch synchronization is
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required to establish which symbol in the received sequence is the

fi rst symbol on the branch, the second, etc. To determine branch

synchronization with biphase modulation, the symbols in the received

sequence can be arbitrarily assigned to branches. If the symbols do

not belong together on a branch, then the decoder (Viterbi or sequential)

can be used to detect that no correct code word exists with either a

transparent code or a nontransparent code, similar to the resolution

of phase ambiguity with a nontransparent code. Each of the n possible

positions for the beginning of the branch is tested until the decoder in­

dicates that a correct code word exists and branch synchronization is

achieved. Since the probability of detection and the probability of false

alarm would not be made one and zero, respectively, each of the n

possible positions for the beginning of the branch may have to be tested

more than once. Thus, the branch synchronization problem using

biphase modulation can be solved in a straightforward manner, as

can the phase ambiguity resolution problem for nontransparent codes.

For quadriphase modulation, there are three important cases to

consider. The first case is a single binary source with a rate I /2

convolutional code using each quadriphase digit as a branch. The

second cas e is a single binary source with a rate 1/3 convolutional

code. The final case consists of the USe of the quadriphase modulation

for multiplexing two binary sources.
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Figure II. 1 illustrates the quadriphase demodulation process

and can be used as a guide in proposing solutions to the problems

associated with each of the three cases to be considered. .The quad-

riphase signal is cos(wctHH0.) where g is a random variable due to
. 1

channel noise and 0i is the phase of the quadriphase modulation. The

angle g is estimated by a Costas loop or phase lock loop as Q. The

reference signal cos(wct+Q) is phase shifted to form cos(wct+Q+ ,"/4)

and sin(Wct+Q+ ,"/4). By mixing the quadriphase signal with these two

signals and then integrating and quantizing, as shown in Figure II. 1,

the first and second symbol sequences can be separated. The vector

diagram in figure II. 1 illustrates the demodulation process as vector

projections. The result of mixing the quadriphas e signal with the cos

and sin terms and then integrating over the symbol time is the projec-

tion onto the first and second symbol axes. Now, the projected values

can be quantized as is done with biphase modulation with an appropriate

scale factor.

In the first case to be considered, the single binary source with

a rate 1/2 convolutional code using each quadriphase digit as a branch,

quadriphase offers no further complication for the combination of branch

synchronization and phase ambiguity than was encountered with biphase

modulation. With quadriphase, there is a fourfold 90 degree phase

ambiguity. However, this can be interpreted as a 180 degree phase

ambiguity (i. e., the received sequence is complemented) and a + 90
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Figure II. 1 Quadriphase Demodulation
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degree phase ambiguity. Thus, the 180 degree phase ambiguity can

be solved by using a transparent code and differential coding on the

binary source. The + 90 degree phase ambiguity can be resolved in

the same way as branch synchronization for biphase modulation (i. e. ,

detect that no correct code word exists and try complementing the

first symbol sequence while interchanging the two symbol sequences).

Therefore, this case is solved by the techniques and design parameters

found for the biphase modulation case.

In the second case to be considered, the single binary source

with a rate 1/3 convolutional code, both branch synchronization and

a fourfold 90 degree phase ambiguity must be resolved. It is possible.

again, to interpret the fourfold 90 degree phase ambiguity as 180 degree

phase ambiguity and a + 90 degree phase ambiguity, resolving the 180

degree phase ambiguity with a transparent code and differential coding

on the binary source. However, the + 90 degree phase ambiguity and

a threefold branch synchronization ambiguity must still be resolved.

Thus, if it is detected that no correct code word exists, then each of

the six (6) possible choices for the branch synchronization and phase

reference (i. e., three branch beginning points for each of the two

possible phases) must be tested. Using a nontransparent code would

require twelve (12) possible choices for branch synchronization and

phase reference, so the performance of transparent codes with differ­

ential coding is a very important consideration.
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In the final case to be considered, two binary sources multi­

plexed by the quadriphase modulation, transparent convolutional codes

and differential coding can be used to reduce the fourfold 90 degree

phase ambiguity to an ambiguity of which sequence is the first symbol

sequence. This possibility is due to the two independent sources

(possibly of different data rates) being convolutional encoded separately

before the modulator. Thus, a 190 degree reference phas e shift com-

plements both sequences and has no effect, while a + 90 degree refer­

ence phase shift interchanges the symbol sequences and complements

one of the sequences, but the complementing of either sequence has no

effect. In order for the decoder to detect the wrong sequence is being

sent to it, either the data rates of the two sources must be different,

the code rates must be different, or the convolutional codes used to

encode the two sources must be different and carefully chosen. To

resolve the branch synchronization of both decoders of the binary

sources simultaneously would require testing a number of possibilities

equal to the least common multiple of the symbol rates. For many

combinations of sources, the branch synchronization problem of the

two decoders becomes so difficult (a large number of possibilities to

be tested) that a transmitted synchronization sequence is the least

complex. However, the use of transparent codes has again reduced

the ambiguity to be resolved by a factor of two.


